Pulmonary mechanics during exercise in subjects with chronic airflow obstruction

Author:

Stubbing D. G.,Pengelly L. D.,Morse J. L.,Jones N. L.

Abstract

A body plethysmograph was used to measure pulmonary mechanics in six subjects with chronic airflow obstruction during steady states at rest and during exercise at 200 and 400 kpm . min-1. The mean forced expired volume in 1 s was 1.32 liters (39.2% predicted). The flow rates during tidal breathing reached the maximum expiratory flow-volume (MEFV) curve in all but one subject, and on exercise they all reached the MEFV curve. Total lung capacity did not change significantly, but functional residual capacity increased to 104% of the control value (P less than 0.05) and residual volume increased to 113.3% of the control value (P less than 0.02). The MEFV curves did not change and tidal flow rates in excess of th MEFV curve were not seen. Dynamic compliance fell with increasing exercise to 52.8% (P less than 0.01) and static expiratory pulmonary compliance to 90.2% of the control value. Transpulmonary pressures during tidal breathing when expiratory flow reached the MEFV curve increased to progressively higher values as the work load increased. At low work loads there were several subjects with negative transpulmonary pressure when maximum flow rates were present. In patients with chronic airflow obstruction, little change occurs during exercise in pulmonary mechanics; the tidal flow patterns are dominated by the expired flow-volume curve, which is not changed by exercise; maximum flow occurs in some patients when transpulmonary pressure is still negative.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3