Influence of overload on recovery of rat plantaris from partial denervation

Author:

Michel R. N.1,Gardiner P. F.1

Affiliation:

1. Ecole de l'Activite Physique, Universite Laurentienne, Sudbury, Ontario, Canada.

Abstract

A functional index of neural adaptability is the capacity of motoneurons to extend and establish supernumerary connections with neighboring denervated muscle fibers. The purpose of this study was to guage this response in rat plantaris muscles subjected to increased levels of activity resulting from the surgical removal of the synergistic gastrocnemius and soleus muscles. Thirty-seven days of overload increased plantaris absolute (69%) and relative (82%) weight, whole muscle (35%) and individual fiber (37%) mean cross-sectional area, half-relaxation time (1/2RT; 25%), and maximum tetanic tension (P0; 21%). In a separate group of animals that had undergone 30 days of overload, three-quarters of the plantaris muscle fibers were denervated by sectioning radicular nerve L4. At 7 days postlesion, contractile responses were obtained from sprouting motor units remaining in radicular nerve L5, and the results compared to a nonoverloaded group that had undergone this same procedure. Twitch time to peak tension and 1/2RT were prolonged in normal partially denervated (PD) and overloaded partially denervated (OPD) muscles, and this response was significantly greater in the overloaded muscles. Both PD and OPD muscles increased twitch tension (38%) and peak tension developed at 25 Hz (34%) to a similar extent, during recovery from partial denervation. These increases, attributable to sprouting of L5 motor axon collaterals, were matched in PD muscles with a corresponding increase in P0, a response which did not occur in OPD muscles. Additionally, a more extensive decrease in P0 occurred as a result of partial denervation in OPD muscles compared with whole muscle P0 of nondenervated muscle (L4 plus L5 stimulation).(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3