Affiliation:
1. Department of Pediatrics (Pulmonary Division), Columbia University, College of Physicians and Surgeons, New York, New York 10032.
Abstract
To study the metabolic and functional changes that occur during training with inspiratory flow resistive loads, a chronically instrumented unanesthetized sheep preparation was used. Sheep were exposed to resistances ranging from 50 to 100 cmH2O.l–1.s, for 2–4 h/day, 5–6 days/wk, for a total of 3 wk. Load intensity was adjusted to maintain arterial Po2 (PaO2) above 60 Torr and arterial PCO2 (PaCO2) below 45 Torr. Training produced significant (P less than 0.05) increases in citrate synthase, 3-hydroxyacyl-CoA dehydrogenase, and cytochrome oxidase in the costal and crural diaphragm of the trained sheep (n = 9) compared with control sheep (n = 7). Phosphofructokinase did not increase. In the quadriceps, citrate synthase, 3-hydroxyacyl-CoA dehydrogenase, and phosphofructokinase did not change with training but cytochrome oxidase increased significantly (P less than 0.01). Function of the diaphragm was assessed in a subset of five sheep exposed to the same severe load 1 wk before and 2 days after the final training session. After training, sheep had a lower PaCO2 (10–40%), generated a higher transdiaphragmatic pressure (20–40%), and could sustain this level of transdiaphragmatic pressure for 0.5–2 h longer. The respiratory duty cycle was 10–15% lower, whereas minute ventilation and tidal volume were 20–30% higher in the posttraining test. We conclude that 1) training with inspiratory flow resistive loads improves the performance of the respiratory neuromuscular system and 2) the shift in enzyme profile of the diaphragm is at least in part responsible for this improvement.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献