Metabolic and functional adaptation of the diaphragm to training with resistive loads

Author:

Akabas S. R.1,Bazzy A. R.1,DiMauro S.1,Haddad G. G.1

Affiliation:

1. Department of Pediatrics (Pulmonary Division), Columbia University, College of Physicians and Surgeons, New York, New York 10032.

Abstract

To study the metabolic and functional changes that occur during training with inspiratory flow resistive loads, a chronically instrumented unanesthetized sheep preparation was used. Sheep were exposed to resistances ranging from 50 to 100 cmH2O.l–1.s, for 2–4 h/day, 5–6 days/wk, for a total of 3 wk. Load intensity was adjusted to maintain arterial Po2 (PaO2) above 60 Torr and arterial PCO2 (PaCO2) below 45 Torr. Training produced significant (P less than 0.05) increases in citrate synthase, 3-hydroxyacyl-CoA dehydrogenase, and cytochrome oxidase in the costal and crural diaphragm of the trained sheep (n = 9) compared with control sheep (n = 7). Phosphofructokinase did not increase. In the quadriceps, citrate synthase, 3-hydroxyacyl-CoA dehydrogenase, and phosphofructokinase did not change with training but cytochrome oxidase increased significantly (P less than 0.01). Function of the diaphragm was assessed in a subset of five sheep exposed to the same severe load 1 wk before and 2 days after the final training session. After training, sheep had a lower PaCO2 (10–40%), generated a higher transdiaphragmatic pressure (20–40%), and could sustain this level of transdiaphragmatic pressure for 0.5–2 h longer. The respiratory duty cycle was 10–15% lower, whereas minute ventilation and tidal volume were 20–30% higher in the posttraining test. We conclude that 1) training with inspiratory flow resistive loads improves the performance of the respiratory neuromuscular system and 2) the shift in enzyme profile of the diaphragm is at least in part responsible for this improvement.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3