Affiliation:
1. Department of Pediatrics, University of Florida College of Medicine, Gainesville 32610.
Abstract
We investigated the mechanism of ethanol-induced pulmonary vasoconstriction in lambs, by a pharmacological approach. We chronically instrumented 28 lambs to determine whether phentolamine (alpha-block), propranolol (beta-block), promethazine and cimetidine (H1- and H2-block), high-dose indomethacin, or low- and high-dose meclofenamate (cyclooxygenase block) altered the vasoconstriction. Ethanol alone increased pulmonary vascular resistance from 0.14 to 0.49 Torr.ml-1.kg-1.min (U). Only indomethacin (7–8 mg/kg po) and high-dose meclofenamate (7–8 mg/kg iv) abolished the pulmonary vascular response to ethanol infusion. Pulmonary vascular resistance was 0.14 U after ethanol plus indomethacin and was 0.2 U after ethanol plus high-dose meclofenamate (P = NS vs. base line). Low-dose meclofenamate (2 mg/kg) attenuated the vasoconstrictor response. Systemic vascular resistance increased moderately after ethanol and had a similar pattern of inhibition by cyclooxygenase blockade. Cardiac output and heart rate decreased nearly significantly after ethanol (P less than 0.06), a tendency that was also ablated by cyclooxygenase inhibition. Thus the acute cardiocirculatory response to ethanol involves an intact prostaglandin synthase system in lambs. To our knowledge, these data are the first documentation that cyclooxygenase enzyme blockade can eliminate the acute cardiac and vascular effects of ethanol in a whole-animal system.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献