Action potentials in single axons: effects of hyperbaric air and hydrostatic pressure

Author:

Bryant H. J.,Blankenship J. E.

Abstract

Resting potential and action potential parameters of crayfish (Procambarus acutus) single axon were examined under hyperbaric air and hydrostatic pressure to 8.6 atmospheres absolute to determine if evidence for the basis of neurological dysfunctions that may occur in diving in this pressure range is detectable at the membrane level. Hyperbaric air increased the maximum rates of depolarization and repolarization of the action potential by (2.2 +/- 0.2) and (2.1 +/- 0.2)%/atm, respectively. Hydrostatic pressure had an opposite effect, decreasing the maximum rates of depolarization and repolarization by (0.57 +/- 0.13) and (0.9 +/- 0.3)%/atm, respectively. Action potential duration was decreased (0.91 +/- 0.19)%/atm by hyperbaric air. Action potential amplitude, resting potential, and threshold were unchanged by increasing pressure. Increasing the nitrogen tension alone produced results consistent with hyperbaric air compression. Thus, increased hydrostatic and nitrogen pressures oppositely affect the rates of polarization of the action potential in a reversible manner at pressures in the range encountered by human divers.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3