Ventilatory response to drug-induced hypermetabolism

Author:

Levine S.,Huckabee W. E.

Abstract

Previous workers have demonstrated that an increase in minute ventilation accompanies tissue hypermetabolism induced by uncouplers of oxidative phosphorylation. The mechanism of this increase in minute ventilation has not been established. Accordingly, 2.5 mg/kg of 2,4-dinitrophenol (DNP) or 8–15 mg/kg of ethyl methylene blue (EMB) were infused into chloralose-anesthetized mongrel dogs; Vo2 increased 105 plus or minus 3% and VE INCREASED 107 PLUS OR MINUS 14%. Heads of vagotomized dogs were then perfused entirely with normal unchanging blood. Spinal cord remained intact. (The carotid bodies lay within the region of the perfused head.) Ventilatory responses of these head-perfused animals to breathing low oxygen and to breathing high CO2 gas mixtures were greatly attenuated. However, when DNP or EMB was infused into the body, VO2 increased 114 plus or minus 23% and VE increased 123 plus or minus 22%. When similar doses of DNP or emb were selectively administered to the head, increases in VE were limited to 21 plus or minus 6%. It is concluded that a major portion of the stimulus to ventilation, which accompanies infusion of DNP or of EMB, arises in tissues other than arterial chemoreceptors and brain. Presumably, this ventilatory stimulus is transmitted to the respiratory center via afferent pathways of the cervical spinal cord.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metabolism, Temperature, and Ventilation;Comprehensive Physiology;2011-10

2. Pulmonary Hypertension;Murray and Nadel's Textbook of Respiratory Medicine;2010

3. Influence of passive hyperthermia on human ventilation during rest and isocapnic hypoxia;Applied Physiology, Nutrition, and Metabolism;2007-08

4. Effect of 2,4-dinitrophenol on the hypometabolic response to hypoxia of conscious adult rats;Journal of Applied Physiology;1997-08-01

5. Oxygen uptake and mean blood pressure as indicators of induced hyperthermia;Journal of Clinical Monitoring;1990-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3