Author:
Armengol J.,Jones R. L.,King E. G.
Abstract
Mechanics of collateral channels during high-frequency oscillatory ventilation (HFOV) were assessed in eight anesthetized dogs, using a modification of Hilpert's technique. Base-line functional residual capacity was measured with a body plethysmograph, with inspiratory efforts induced by phrenic nerve stimulation. The resistance (Rcoll) and time constant (Tcoll) of collateral channels at five lung volumes were measured during HFOV and positive end-expiratory pressure (PEEP). Rcoll and Tcoll were significantly higher during HFOV (P less than 0.001); the differences did not correlate with resting lung volumes. The calculated static compliance of the wedged segment was similar during HFOV and PEEP (P greater than 0.005). Mean pressures measured in small airways during HFOV corresponded to the midline between the inflation and deflation limbs of the static pressure-volume curves, indicating similar pressure-volume characteristics of the respiratory system during HFOV and static conditions. We conclude that HFOV increases resistance to gas flow through collateral channels but that this pathway may still be important in gas exchange.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献