Contribution of continuing gas exchange to phase III exhaled PCO2 and PO2 profiles

Author:

Gronlund J.,Swenson E. R.,Ohlsson J.,Hlastala M. P.

Abstract

Changes in PCO2 and PO2 during expiration have been ascribed to simultaneous gas exchange, but other factors such as ventilation-perfusion inhomogeneity in combination with sequential emptying may also contribute. An experimental and model approach was used to study the relationship between gas exchange and changes in expired PCO2 and PO2 in anesthetized dogs during prolonged high tidal volume expirations. Changes in PCO2 and PO2 were quantified by taking the area bounded by the sloping exhalation curve and a line drawn horizontally from a point where the Fowler dead space plus 250 ml had been expired. This procedure is similar to using the slope of the exhalation curve but it circumvents problems caused by nonlinearity of the PCO2 and PO2 curves. The gas exchange components of the CO2 and O2 areas were calculated using a single-alveolus lung model whose input parameters were measured in connection with each prolonged expiration. The relationship between changes in experimental CO2 areas caused by sudden reductions in mixed venous PCO2 (produced by right atrial infusions of NaOH) and those calculated by the model was also studied. In seven dogs, calculated CO2 and O2 areas were 13% higher and 25% lower than the respective experimental areas, but interindividual variations were large. Changes in experimental CO2 areas caused by step changes in mixed venous PCO2 were almost identical to changes in the calculated areas. We conclude that the changes in PCO2 and PO2 during expiration cannot be explained solely by gas exchange. However, the single-alveolus lung model accurately predicts changes in the CO2 exhalation curve caused by alterations in the alveolar CO2 flow.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3