Virtual Vocalization Stimuli for Investigating Neural Representations of Species-Specific Vocalizations

Author:

DiMattina Christopher,Wang Xiaoqin

Abstract

Most studies investigating neural representations of species-specific vocalizations in non-human primates and other species have involved studying neural responses to vocalization tokens. One limitation of such approaches is the difficulty in determining which acoustical features of vocalizations evoke neural responses. Traditionally used filtering techniques are often inadequate in manipulating features of complex vocalizations. Furthermore, the use of vocalization tokens cannot fully account for intrinsic stochastic variations of vocalizations that are crucial in understanding the neural codes for categorizing and discriminating vocalizations differing along multiple feature dimensions. In this work, we have taken a rigorous and novel approach to the study of species-specific vocalization processing by creating parametric “virtual vocalization” models of major call types produced by the common marmoset ( Callithrix jacchus). The main findings are as follows. 1) Acoustical parameters were measured from a database of the four major call types of the common marmoset. This database was obtained from eight different individuals, and for each individual, we typically obtained hundreds of samples of each major call type. 2) These feature measurements were employed to parameterize models defining representative virtual vocalizations of each call type for each of the eight animals as well as an overall species-representative virtual vocalization averaged across individuals for each call type. 3) Using the same feature-measurement that was applied to the vocalization samples, we measured acoustical features of the virtual vocalizations, including features not explicitly modeled and found the virtual vocalizations to be statistically representative of the callers and call types. 4) The accuracy of the virtual vocalizations was further confirmed by comparing neural responses to real and synthetic virtual vocalizations recorded from awake marmoset auditory cortex. We found a strong agreement between the responses to token vocalizations and their synthetic counterparts. 5) We demonstrated how these virtual vocalization stimuli could be employed to precisely and quantitatively define the notion of vocalization “selectivity” by using stimuli with parameter values both within and outside the naturally occurring ranges. We also showed the potential of the virtual vocalization stimuli in studying issues related to vocalization categorizations by morphing between different call types and individual callers.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference45 articles.

1. Agamaite JA. A Quantitative Characterization of the Vocal Repertoire of the Common Marmoset (master's thesis). Baltimore, MD: Johns Hopkins University, 1997.

2. Agamaite JA and Wang X. Quantitative classification of the vocal repertoire of the common marmoset, Callithrix Jacchus Jacchus. Assoc Res Otolaryngol Annu Midwinter Mtg 573, 1997.

3. Aitkin LM, Merzenich MM, Irvine DR, Clarey JC, and Nelson JE. Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus). J Comp Neurol 252: 175–185, 1986.

4. Principal and Independent Components of Macaque Vocalizations: Constructing Stimuli to Probe High-Level Sensory Processing

5. Responses of Neurons in Cat Primary Auditory Cortex to Bird Chirps: Effects of Temporal and Spectral Context

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3