Affiliation:
1. McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Canada;
2. Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; and
3. Discipline of Paediatrics, University of Queensland, Royal Childrens Hospital, Brisbane, Australia
Abstract
Amblyopia or lazy eye is the most common cause of uniocular blindness in adults and is caused by a disruption to normal visual development as a consequence of unmatched inputs from the two eyes in early life, arising from a turned eye (strabismus), unequal refractive error (anisometropia), or form deprivation (e.g., cataract). Using high-field functional magnetic resonance imaging in a group of human adults with amblyopia, we previously demonstrated that reduced responses are observable at a thalamic level, that of the lateral geniculate nucleus (LGN). Here we investigate the selectivity of this deficit by using chromatic and achromatic stimuli that are designed to bias stimulation to one or other of the three ascending pathways (the parvocellular, magnocellular, and koniocellular). We find the greatest LGN deficit is for stimuli modulated along the chromatic, L/M cone opponent axis of color space, suggesting a selective loss of parvocellular function in the LGN. We also demonstrate a cortical deficit that involves all the visual areas studied (V1, V2, V3, VP, V3A, V4), and we find this is greatest for the two chromatic responses (S cone opponent and L/M cone opponent) versus the achromatic response, as might be expected from a loss of segregation of chromatic pathways in the cortex.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献