Shaping the Optimal Repetition Interval for Cathodal Transcranial Direct Current Stimulation (tDCS)

Author:

Monte-Silva Katia1,Kuo Min-Fang1,Liebetanz David1,Paulus Walter1,Nitsche Michael A.1

Affiliation:

1. Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany

Abstract

Transcranial DC stimulation (tDCS) is a plasticity-inducing noninvasive brain stimulation tool with various potential therapeutic applications in neurological and psychiatric diseases. Currently, the duration of the aftereffects of stimulation is restricted. For future clinical applications, stimulation protocols are required that produce aftereffects lasting for days or weeks. Options to prolong the effects of tDCS are further prolongation or repetition of tDCS. Nothing is known thus far about optimal protocols in this behalf, although repetitive stimulation is already performed in clinical applications. Thus we explored the effects of different break durations on cathodal tDCS-induced cortical excitability alterations. In 12 subjects, two identical periods of cathodal tDCS (9-min duration; 1 mA) with an interstimulation interval of 0 (no break), 3, or 20 min or 3 or 24 h were performed. The results indicate that doubling stimulation duration without a break prolongs the aftereffects from 60 to 90 min after tDCS. When the second stimulation was performed during the aftereffects of the first, a prolongation and enhancement of tDCS-induced effects for ≤120 min after stimulation was observed. In contrast, when the second stimulation followed the first one after 3 or 24 h, the aftereffects were initially attenuated, or abolished, but afterwards re-established for up to 120 min after tDCS in the 24-h condition. These results suggest that, for prolonging the aftereffects of cathodal tDCS, stimulation interval might be important.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3