Long-term measurement of muscle denervation and locomotor behavior in individual wild-type and ALS model mice

Author:

Akay Turgay1

Affiliation:

1. Department of Neurological Surgery, Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York

Abstract

The increasing number of mouse models of human degenerative and injury-related diseases that affect motor behavior raises the importance of in vivo methodologies allowing measurement of physiological and behavioral changes over an extended period of time in individual animals. A method that provides long-term measurements of muscle denervation and its behavioral consequences in individual mice for several months is presented in this article. The method is applied to mSod1G93A mice, which model human amyotrophic lateral sclerosis (ALS). The denervation process of gastrocnemius and soleus muscles in mSod1G93A mice is demonstrated for up to 3 mo. The data suggest that as muscle denervation progresses, massive behavioral compensation occurs within the spinal cord that allows animals to walk almost normally until late ages. Only around the age of 84 days is the first sign of abnormal movement during walking behavior detected as an abnormal tibialis anterior activity profile that is manifested in subtle but abnormal swing movement during walking. Additionally, this method can be used with other mouse models of human diseases, such as spinal cord injury, intracerebral hemorrhage, Parkinson's diseases, and spinal muscular atrophy.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3