Synaptic Activity in Chronically Injured, Epileptogenic Sensory-Motor Neocortex

Author:

Li Huifang1,Prince David A.1

Affiliation:

1. Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305

Abstract

We recorded spontaneous and evoked synaptic currents in pyramidal neurons of layer V in chronically injured, epileptogenic neocortex to assess changes in the efficacy of excitatory and inhibitory neurotransmission that might promote cortical hyperexcitability. Partial sensory-motor neocortical isolations with intact blood supply (“undercuts”) were made in 20 rats on postnatal day 21–25 and examined 2–6 wk later in standard brain slice preparations using whole cell patch-clamp techniques. Age-matched, uninjured naive rats ( n = 20) were used as controls. Spontaneous and miniature excitatory and inhibitory postsynaptic currents (s- and mEPSCs; s- and mIPSCs) were recorded using patch-clamp techniques. The average frequency of s- and mEPSCs was significantly higher, while that of s- and mIPSCs was significantly lower in neurons of undercuts versus controls. The increased frequency of excitatory events was due to an increase in both s- and mEPSC frequency, suggesting an increased number of excitatory contacts and/or increased release probability at excitatory terminals. No significant difference was observed in 10–90% rise time of these events. The input-output slopes of fast, short-latency, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate (AMPA/KA) receptor-mediated components of evoked EPSCs were steeper in undercuts than in controls. The peak amplitude of the AMPA/KA component of EPSCs evoked by supra-threshold stimuli was significantly greater in the partially isolated neocortex. In contrast, the N-methyl-d-aspartate receptor-mediated component of evoked EPSCs was not significantly different in neurons of injured versus control cortex, suggesting that the increased AMPA/KA component was due to postsynaptic alterations. Results support the conclusion that layer V pyramidal neurons receive increased AMPA/KA receptor-mediated excitatory synaptic drive and decreased GABAA receptor-mediated inhibition in this chronically injured, epileptogenic cortex. This shift in the balance of excitatory and inhibitory synaptic activation of layer V pyramidal cells toward excitation might be maladaptive and play a critical role in epileptogenesis.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3