Increase in heterogeneity of biceps brachii activation during isometric submaximal fatiguing contractions: a multichannel surface EMG study

Author:

Staudenmann Didier1,van Dieën Jaap H.23,Stegeman Dick F.24,Enoka Roger M.5

Affiliation:

1. Movement and Sport Science, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland;

2. MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands;

3. King Abdulaziz University, Jeddah, Saudi Arabia;

4. Donders Institute for Brain, Cognition and Behavior, Department of Neurology/Clinical Neurophysiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and

5. Department of Integrative Physiology, University of Colorado, Boulder, Colorado

Abstract

The effects of fatigue emerge from the beginning of sustained submaximal contractions, as shown by an increase in the amplitude of the surface electromyogram (EMG). The increase in EMG amplitude is attributed to an augmentation of the excitatory drive to the motor neuron pool that, more importantly than increasing discharge rates, recruits additional motor units for the contraction. The aim of this study was to determine whether the spatiotemporal distribution of biceps brachii (BB) activity becomes more or less heterogeneous during a fatiguing isometric contraction sustained at a submaximal target force. Multiple electrodes were attached over the entire BB muscle, and principal component analysis (PCA) was used to extract the representative information from multiple monopolar EMG channels. The development of heterogeneity during the fatiguing contraction was quantified by applying a cluster algorithm on the PCA-processed EMG amplitudes. As shown previously, the overall EMG amplitude increased during the sustained contraction, whereas there was no change in coactivation of triceps brachii. However, EMG amplitude did not increase in all channels and even decreased in some. The change in spatial distribution of muscle activity varied across subjects. As found in other studies, the spatial distribution of EMG activity changed during the sustained contraction, but the grouping and size of the clusters did not change. This study showed for the first time that muscle activation became more heterogeneous during a sustained contraction, presumably due to a decrease in the strength of common inputs with the recruitment of additional motor units.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3