Inhibition of Nav1.7 and Nav1.4 Sodium Channels by Trifluoperazine Involves the Local Anesthetic Receptor

Author:

Sheets Patrick L.,Gerner Peter,Wang Chi-Fei,Wang Sho-Ya,Wang Ging Kuo,Cummins Theodore R.

Abstract

The calmodulin (CaM) inhibitor trifluoperazine (TFP) can produce analgesia when given intrathecally to rats; however, the mechanism is not known. We asked whether TFP could modulate the Nav1.7 sodium channel, which is highly expressed in the peripheral nervous system and plays an important role in nociception. We show that 500 nM and 2 μM TFP induce major decreases in Nav1.7 and Nav1.4 current amplitudes and that 2 μM TFP causes hyperpolarizing shifts in the steady-state inactivation of Nav1.7 and Nav1.4. CaM can bind to the C-termini of voltage-gated sodium channels and modulate their functional properties; therefore we investigated if TFP modulation of sodium channels was due to CaM inhibition. However, the TFP inhibition was not replicated by whole cell dialysis of a calmodulin inhibitory peptide, indicating that major effects of TFP do not involve a disruption of CaM-channel interactions. Rather, our data show that TFP inhibition is state dependent and that the majority of the TFP inhibition depends on specific amino-acid residues in the local anesthetic receptor site in sodium channels. TFP was also effective in vivo in causing motor and sensory blockade after subfascial injection to the rat sciatic nerve. The state-dependent block of Nav1.7 channels with nanomolar concentrations of TFP raises the possibility that TFP, or TFP analogues, might be useful for regional anesthesia and pain management and could be more potent than traditional local anesthetics.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference32 articles.

1. Analysis of moricizine block of sodium current in isolated guinea-pig atrial myocytes

2. Blockade of cardiac sodium channels by amitriptyline and diphenylhydantoin. Evidence for two use-dependent binding sites.

3. Lidocaine block of cardiac sodium channels.

4. Bolotina V, Courtney KR, and Khodorov B. Gate-dependent blockade of sodium channels by phenothiazine derivatives: structure-activity relationships. Mol Pharmacol 42: 423–431, 1992.

5. Properties and functions of calmodulin

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3