Reversed timing-dependent associative plasticity in the human brain through interhemispheric interactions

Author:

Conde Virginia1,Vollmann Henning1,Taubert Marco1,Sehm Bernhard1,Cohen Leonardo G.2,Villringer Arno13,Ragert Patrick1

Affiliation:

1. Max Planck Institute for Human Cognitive and Brain Sciences and Department of Neurology and Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany;

2. Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland

3. Mind Brain Institute, Charité and Humboldt University, Berlin, Germany; and

Abstract

Spike timing-dependent plasticity (STDP) has been proposed as one of the key mechanisms underlying learning and memory. Repetitive median nerve stimulation, followed by transcranial magnetic stimulation (TMS) of the contralateral primary motor cortex (M1), defined as paired-associative stimulation (PAS), has been used as an in vivo model of STDP in humans. PAS-induced excitability changes in M1 have been repeatedly shown to be time-dependent in a STDP-like fashion, since synchronous arrival of inputs within M1 induces long-term potentiation-like effects, whereas an asynchronous arrival induces long-term depression (LTD)-like effects. Here, we show that interhemispheric inhibition of the sensorimotor network during PAS, with the peripheral stimulation over the hand ipsilateral to the motor cortex receiving TMS, results in a LTD-like effect, as opposed to the standard STDP-like effect seen for contralateral PAS. Furthermore, we could show that this reversed-associative plasticity critically depends on the timing interval between afferent and cortical stimulation. These results indicate that the outcome of associative stimulation in the human brain depends on functional network interactions (inhibition or facilitation) at a systems level and can either follow standard or reversed STDP-like mechanisms.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3