Role of Interneuron Diversity in the Cortical Microcircuit for Attention

Author:

Buia Calin I.,Tiesinga Paul H.

Abstract

Receptive fields of neurons in cortical area V4 are large enough to fit multiple stimuli, making V4 the ideal place to study the effects of selective attention at the single-neuron level. Experiments have revealed evidence for stimulus competition and have characterized the effect thereon of spatial and feature-based attention. We developed a biophysical model with spiking neurons and conductance-based synapses. To account for the comprehensive set of experimental results, it was necessary to include in the model, in addition to regular spiking excitatory (E) cells, two types of interneurons: feedforward interneurons (FFI) and top-down interneurons (TDI). Feature-based attention was mediated by a projection of the TDI to the FFI, stimulus competition was mediated by a cross-columnar excitatory connection to the FFI, whereas spatial attention was mediated by an increase in activity of the feedforward inputs from cortical area V2. The model predicts that spatial attention increases the FFI firing rate, whereas feature-based attention decreases the FFI firing rate and increases the TDI firing rate. During strong stimulus competition, the E cells were synchronous in the beta frequency range (15–35 Hz), but with feature-based attention, they became synchronous in the gamma frequency range (35–50 Hz). We propose that the FFI correspond to fast-spiking, parvalbumin-positive basket cells and that the TDI correspond to cells with a double-bouquet morphology that are immunoreactive to calbindin or calretinin. Taken together, the model results provide an experimentally testable hypothesis for the behavior of two interneuron types under attentional modulation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3