Examining protection from anoxic depolarization by the drugs dibucaine and carbetapentane using whole cell recording from CA1 neurons

Author:

White Sean H.1,Brisson C. Devin1,Andrew R. David1

Affiliation:

1. Centre for Neuroscience Studies and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada

Abstract

As an immediate consequence of stroke onset, failure of the Na+-K+-ATPase pump evokes a propagating anoxic depolarization (AD) across gray matter. Acute neuronal swelling and dendritic beading arise within seconds in the future ischemic core, imaged as changes in light transmittance (ΔLT). AD is itself not a target for drug-based reduction of stroke injury because it is generated in the 1st min of stroke onset. Peri-infarct depolarizations (PIDs) are milder AD-like events that recur during the hours following AD and contribute to infarct expansion. Inhibiting PIDs with drugs could limit expansion. Two types of drugs, “caines” and σ1-receptor ligands, have been found to inhibit AD onset (and may also oppose PID initiation), yet their underlying actions have not been examined. Imaging ΔLT in the CA1 region simultaneously with whole cell current-clamp recording from CA1 pyramidal neurons reveal that the elevated LT front and onset of the AD are coincident. Either dibucaine or carbetapentane pretreatment significantly delays AD onset without affecting resting membrane potential or neuronal input resistance. Dibucaine decreases excitability by raising spike threshold and decreasing action potential (AP) frequency, whereas carbetapentane eliminates the fast afterhyperpolarization while accentuating the slow afterhyperpolarization to reduce AP frequency. Orthodromic and antidromic APs are eliminated by dibucaine within 15 min but not by carbetapentane. Thus both drugs reduce cortical excitability at the level of the single pyramidal neuron but through strikingly different mechanisms. In vivo, both drugs would likely inhibit recurring PIDs in the expanding penumbra and so potentially could reduce developing neuronal damage over many hours poststroke when PIDs occur.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3