Figure-ground organization in the visual cortex: does meaning matter?

Author:

Ko Hee-kyoung1,von der Heydt Rüdiger12ORCID

Affiliation:

1. Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland

2. Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland

Abstract

Figure-ground organization in the visual cortex is generally assumed to be based partly on general rules and partly on specific influences of object recognition in higher centers as found in the temporal lobe. To see if shape familiarity influences figure-ground organization, we tested border ownership-selective neurons in monkey V1/V2 with silhouettes of human and monkey face profiles and “nonsense” silhouettes constructed by mirror-reversing the front part of the profile. We found no superiority of face silhouettes compared with nonsense shapes in eliciting border-ownership signals overall. However, in some neurons, border-ownership signals differed strongly between the two categories consistently across many different profile shapes. Surprisingly, this category selectivity appeared as early as 70 ms after stimulus onset, which is earlier than the typical latency of shape-selective responses but compatible with the earliest face-selective responses in the inferior temporal lobe. Although our results provide no evidence for a delayed top-down influence from object recognition centers, they indicate sophisticated shape categorization mechanisms that are much faster than generally assumed. NEW & NOTEWORTHY A long-standing question is whether low-level sensory representations in cortex are influenced by cognitive “top-down” signals. We studied figure-ground organization in the visual cortex by comparing border-ownership signals for face profiles and matched nonsense shapes. We found no sign of “face superiority” in the population border-ownership signal. However, some neurons consistently differentiated between the face and nonsense categories early on, indicating the presence of shape classification mechanisms that are much faster than previously assumed.

Funder

HHS | NIH | National Eye Institute (NEI)

DOD | Office of Naval Research (ONR)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3