Migration of Motor Pool Activity in the Spinal Cord Reflects Body Mechanics in Human Locomotion

Author:

Cappellini Germana1,Ivanenko Yuri P.1,Dominici Nadia12,Poppele Richard E.3,Lacquaniti Francesco124

Affiliation:

1. Laboratory of Neuromotor Physiology, Santa Lucia Foundation;

2. Centre of Space Bio-medicine and

3. Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota

4. Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy; and

Abstract

During the evolution of bipedal modes of locomotion, a sequential rostrocaudal activation of trunk muscles due to the undulatory body movements was replaced by more complex and discrete bursts of activity. Nevertheless, the capacity for segmental rhythmogenesis and the rostrocaudal propagation of spinal cord activity has been conserved. In humans, motoneurons of different muscles are arranged in columns, with a specific grouping of muscles at any given segmental level. The muscle patterns of locomotor activity and the biomechanics of the body center of mass have been studied extensively, but their interrelationship remains poorly understood. Here we mapped the electromyographic activity recorded from 30 bilateral leg muscles onto the spinal cord in approximate rostrocaudal locations of the motoneuron pools during walking and running in humans. We found that the rostrocaudal displacements of the center of bilateral motoneuron activity mirrored the changes in the energy due to the center-of-body mass motion. The results suggest that biomechanical mechanisms of locomotion, such as the inverted pendulum in walking and the pogo-stick bouncing in running, may be tightly correlated with specific modes of progression of motor pool activity rostrocaudally in the spinal cord.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3