Affiliation:
1. University Bordeaux, Centre National de la Recherche Scientifique Unité Mixte de Recherche, Bordeaux, France;
2. Department of Pharmacology, School of Medicine, University of the Basque Country, Vizcaya, Spain; and
3. Leeds Institute of Genetics, Therapeutics and Health (LIGHT), University of Leeds, Leeds, United Kingdom
Abstract
Fast inhibitory synaptic transmission in the brain relies on ionotropic GABAA receptors (GABAAR). Eighteen genes code for GABAAR subunits, but little is known about the ε subunit. Our aim was to identify the synaptic transmission properties displayed by native receptors incorporating ε. Immunogold localization detected ε at synaptic sites on locus coeruleus (LC) neurons. In situ hybridization revealed prominent signals from ε, and θ mRNAs, some low β1 and β3 signals, and no γ signal. Using in vivo extracellular and in vitro patch-clamp recordings in LC, we established that neuron firing rates, GABA-activated currents, and mIPSC charge were insensitive to the benzodiazepine flunitrazepam (FLU), in agreement with the characteristics of recombinant receptors including an ε subunit. Surprisingly, LC provided binding sites for benzodiazepines, and GABA-induced currents were potentiated by diazepam (DZP) in the micromolar range. A number of GABAAR ligands significantly potentiated GABA-induced currents, and zinc ions were only active at concentrations above 1 μM, further indicating that receptors were not composed of only α and β subunits, but included an ε subunit. In contrast to recombinant receptors including an ε subunit, GABAAR in LC showed no agonist-independent opening. Finally, we determined that mIPSCs, as well as ensemble currents induced by ultra-fast GABA application, exhibited surprisingly slow rise times. Our work thus defines the signature of native GABAAR with a subunit composition including ε: differential sensitivity to FLU and DZP and slow rise time of currents. We further propose that α3, β1/3, θ and ε subunits compose GABAAR in LC.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献