Beta Rhythms (15–20 Hz) Generated by Nonreciprocal Communication in Hippocampus

Author:

Bibbig Andrea,Middleton Steven,Racca Claudia,Gillies Martin J.,Garner Helen,LeBeau Fiona E. N.,Davies Ceri H.,Whittington Miles A.

Abstract

Generation of gamma rhythms in reciprocally connected areas of cortex produces synchronous neuronal firing, although little is known about the consequences of gamma rhythms when generated in nonreciprocally connected regions. This nonreciprocity exists in hippocampus, where gamma rhythms are generated in area CA3 in vitro and in vivo and nonreciprocally projected to area CA1 by the Schaffer collateral pathway. Here we demonstrate how this CA3 gamma rhythm generates two different patterns of local CA1 oscillation dependent on the degree of output from area CA1. 1) In conditions where activity projected to area CA1 produces only very low principal cell recruitment the local population rhythm mimics the gamma rhythm projected from CA3. This activity is generated predominantly by recruitment of CA1 basket cells in a manner dependent on phasic, feedforward excitation of this interneuron subclass. Interneurons in stratum oriens, not receiving CA3 feedforward input, fired at theta frequencies. 2) In the presence of serotonin CA1 principal cell recruitment was appreciably enhanced, resulting in dual activation of CA1 basket cells through both feedforward and feedback excitations. Feedback excitation to CA1 stratum oriens interneurons was also enhanced. The resulting change in interneuron network dynamics generated a beta-frequency CA1 rhythm (as a near-subharmonic of the gamma rhythm projected from CA3). These findings demonstrate that in nonreciprocally connected networks, the frequency of population rhythms in target areas serves to code for degree of principal cell recruitment by afferent input.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3