Vestibulo-spinal and vestibulo-ocular reflexes are modulated when standing with increased postural threat

Author:

Naranjo E. N.1,Cleworth T. W.1,Allum J. H. J.12,Inglis J. T.134,Lea J.5,Westerberg B. D.5,Carpenter M. G.134

Affiliation:

1. School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada;

2. Department of Otolaryngology, University Hospital, Basel, Switzerland;

3. International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada;

4. Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; and

5. BC Rotary Hearing and Balance Centre at St. Paul's Hospital, Vancouver, British Columbia, Canada

Abstract

We investigated how vestibulo-spinal reflexes (VSRs) and vestibulo-ocular reflexes (VORs) measured through vestibular evoked myogenic potentials (VEMPs) and video head impulse test (vHIT) outcomes, respectively, are modulated during standing under conditions of increased postural threat. Twenty-five healthy young adults stood quietly at low (0.8 m from the ground) and high (3.2 m) surface height conditions in two experiments. For the first experiment ( n = 25) VEMPs were recorded with surface EMG from inferior oblique (IO), sternocleidomastoid (SCM), trapezius (TRP), and soleus (SOL) muscles in response to 256 air-conducted short tone bursts (125 dB SPL, 500 Hz, 4 ms) delivered via headphones. A subset of subjects ( n = 19) also received horizontal and vertical head thrusts (∼150°/s) at each height in a separate session, comparing eye and head velocities by using a vHIT system for calculating the functional VOR gains. VEMP amplitudes (IO, TRP, SOL) and horizontal and vertical vHIT gains all increased with high surface height conditions ( P < 0.05). Changes in IO and SCM VEMP amplitudes as well as horizontal vHIT gains were correlated with changes in electrodermal activity (ρ = 0.44–0.59, P < 0.05). VEMP amplitude for the IO also positively correlated with fear (ρ = 0.43, P = 0.03). Threat-induced anxiety, fear, and arousal have significant effects on VSR and VOR gains that can be observed in both physiological and functional outcome measures. These findings provide support for a potential central modulation of the vestibular nucleus complex through excitatory inputs from neural centers involved in processing fear, anxiety, arousal, and vigilance.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Gouvernement du Canada)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3