A Likelihood Method for Computing Selection Times in Spiking and Local Field Potential Activity

Author:

Banerjee Arpan1,Dean Heather L.1,Pesaran Bijan1

Affiliation:

1. Center for Neural Science, New York University, New York, New York

Abstract

The timing of neural responses to ongoing behavior is an important measure of the underlying neural processes. Neural processes are distributed across many different brain regions and measures of the timing of neural responses are routinely used to test relationships between different brain regions. Testing detailed models of functional neural circuitry underlying behavior depends on extracting information from single trials. Despite their importance, existing methods for analyzing the timing of information in neural signals on single trials remain limited in their scope and application. We develop a novel method for estimating the timing of information in neural activity that we use to measure selection times, when an observer can reliably use observations of neural activity to select between two descriptions of the activity. The method is designed to satisfy three criteria: selection times should be computed from single trials, they should be computed from both spiking and local field potential (LFP) activity, and they should allow us to make comparisons between different recordings. Our approach characterizes the timing of information in terms of an accumulated log-likelihood ratio (AccLLR), which distinguishes between two alternative hypotheses and uses the AccLLR to estimate the selection time. We develop the AccLLR procedure for binary discrimination using example recordings of spiking and LFP activity in the posterior parietal cortex of a monkey performing a memory-guided saccade task. We propose that the AccLLR method is a general and practical framework for the analysis of signal timing in the nervous system.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3