Reversal of Hippocampal LTP by Spontaneous Seizure-Like Activity: Role of Group I mGluR and Cell Depolarization

Author:

Hu Bin,Karnup Sergei,Zhou Lei,Stelzer Armin

Abstract

Memory impairment is a common consequence of epileptic seizures. The hippocampal formation is particularly prone to seizure-induced amnesia due to its prominent role in mnemonic processes. We used the isolated CA1 slice preparation to examine effects of seizure-like activity on hippocampal plasticity, long-term potentiation (LTP), and long-term depression (LTD). Repeated spontaneous ictal events, generated in the presence of antagonists of GABAA receptor function, led to a stepwise erasure of LTP (termed spontaneous depotentiation, SDP). SDP could be initiated at various stages of LTP consolidation (tested ≤120 min after the induction of LTP). Renewed tetanic stimulation re-established LTP. SDP was remarkably specific: baseline transmission and other forms of hippocampal plasticity, i.e., Ca2+-induced LTP and two forms of LTD [(RS)-3,5-dihydroxyphenyglycine (DHPG) mediated and low-frequency stimulation mediated] were not affected by the same type of seizure activity. SDP was blocked in the presence of the group I mGluR antagonist ( S)-4-carboxyphenylglycine. The mGluR1 antagonist ( S)-(+)-α-amino-methylbenzeneacetic acid blocked ∼80%, the mGluR5-specific antagonist 2-methyl-6-(phenylethynyl)-pyridine ∼30% of SDP. Most efficient implementation of SDP was observed during seizures in the combined presence of the group I mGluR agonist DHPG and the GABAA antagonist bicuculline. However, similar ictal activity generated in the presence of DHPG alone did not lead to SDP in the vast majority of recordings. Complete disinhibition and at least partial activation of group I mGluR were necessary conditions for the induction of SDP. The depotentiating pharmacological conditions were accompanied by tonic membrane depolarization of CA1 pyramidal cells. Since hyperpolarization (by negative current injection) prevented intracellular SDP under depotentiating pharmacological conditions and depolarization (by positive current injection) led to selective intracellular SDP in the non-depotentiating seizure protocol of DHPG, it is concluded that cell depolarization was a sufficient condition for seizure-like activity to reverse hippocampal LTP.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3