Affiliation:
1. Graduate Program in Neuroscience, Uniformed Services University School of Medicine, Bethesda, Maryland
2. Department of Pharmacology, Uniformed Services University School of Medicine, Bethesda, Maryland; and
Abstract
Chronic global N-methyl-d-aspartate receptor (NMDAR) blockade leads to changes in glutamatergic transmission. The impact of more subunit-selective NMDAR inhibition on glutamatergic circuits remains incomplete. To this end, organotypic hippocampal slice cultures were treated for 17–21 days with the high-affinity competitive antagonist d-aminophosphonovaleric acid (d-APV), the allosteric GluN2B-selective antagonist Ro25-6981, or the newer competitive GluN2A-preferring antagonist NVP-AAM077. Electrophysiological recordings from dentate granule cells revealed that chronic d-APV treatment increased, whereas chronic Ro25-6981 reduced, epileptiform event-associated large-amplitude spontaneous excitatory postsynaptic currents (sEPSC) compared with all other treatment groups, consistent with opposite effects on glutamatergic networks. Presynaptically, chronic d-APV or Ro25-6981 increased small-amplitude sEPSCs and AMPA/kainate receptor-mediated miniature EPSCs (mEPSCAMPAR) frequency. Chronic d-APV or NVP-AAM077, but not Ro25-6981, increased putative vGlut1-positive glutamatergic synapses. Postsynaptically, chronic d-APV dramatically increased mEPSCAMPAR and profoundly decreased NMDAR-mediated mEPSC (mEPSCNMDAR) measures, suggesting increased AMPAR/NMDAR ratio. Ro25-6981 decreased mEPSCAMPAR charge transfer and modestly decreased mEPSCNMDAR frequency and decay, suggesting downward scaling of AMPAR and NMDAR function without dramatically altering AMPAR/NMDAR ratio. Extrasynaptically, threo-β-benzyloxyaspartate-enhanced “tonic” NMDAR current amplitude and activated channel number estimates were significantly increased only by chronic Ro25-6981. For intrinsic excitability, action potential threshold was slightly more negative following chronic d-APV or NVP-AAM077. The predominant pro-excitatory effects of chronic d-APV are consistent with increased glutamatergic transmission and network excitability. The minor effects of chronic NVP-AAM077 on action potential threshold and synapse number are consistent with minimal effects on circuit function. The chronic Ro25-6981-induced downward scaling of synaptic AMPAR and NMDAR function is consistent with decreased postsynaptic glutamate receptors and reduced network excitability.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献