Role of Myelination in the Development of a Uniform Olivocerebellar Conduction Time

Author:

Lang Eric J.1,Rosenbluth Jack12

Affiliation:

1. Department of Physiology and Neuroscience and

2. Rusk Institute, New York University, School of Medicine, New York, New York 10016

Abstract

Purkinje cells generate simultaneous complex spikes as a result of olivocerebellar activity. This synchronization (to within 1 ms) is thought to result from electrotonic coupling of inferior olivary neurons. However, the distance from the inferior olive (IO) varies across the cerebellar cortex. Thus signals generated simultaneously at the IO should arrive asynchronously across the cerebellar cortex, unless the length differences are compensated for. Previously, it was shown that the conduction time from the IO to the cerebellar cortex remains nearly constant at ≈4 ms in the rat, implying the existence of such compensatory mechanisms. Here, we examined the role of myelination in generating a constant olivocerebellar conduction time by investigating the latency of complex spikes evoked by IO stimulation during development in normal rats and myelin-deficient mutants. In normal rats, myelination not only reduced overall olivocerebellar conduction time, but also disproportionately reduced the conduction time to vermal lobules, which had the longest response latencies prior to myelination. The net result was a nearly uniform conduction time. In contrast, in myelin-deficient rats, conduction time differences to different parts of the cerebellum remained during the same developmental period. Thus myelination is the primary factor in generating a uniform olivocerebellar conduction time. To test the importance of a uniform conduction time for generating synchronous complex spike activity, multiple electrode recordings were obtained from normal and myelin-deficient rats. Average synchrony levels were higher in normal rats than mutants. Thus the uniform conduction time achieved through myelination of olivocerebellar fibers appears to be essential for the normal expression of complex spike synchrony.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3