Alternative representation of neural activation in multivariate models of neurovascular coupling in humans

Author:

Panerai Ronney B.12,Hanby Martha F.1,Robinson Thompson G.12,Haunton Victoria J.12

Affiliation:

1. Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom

2. National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom

Abstract

Neural stimulation leads to increases in cerebral blood flow (CBF), but simultaneous changes in covariates, such as arterial blood pressure (BP) and [Formula: see text], rule out the use of CBF changes as a reliable marker of neurovascular coupling (NVC) integrity. Healthy subjects performed repetitive (1 Hz) passive elbow flexion with their dominant arm for 60 s. CBF velocity (CBFV) was recorded bilaterally in the middle cerebral artery with transcranial Doppler, BP with the Finometer device, and end-tidal CO2 (EtCO2) with capnography. The simultaneous effects of neural stimulation, BP, and [Formula: see text] on CBFV were expressed with a dynamic multivariate model, using BP, EtCO2, and stimulation [ s( t)] as inputs. Two versions of s( t) were considered: a gate function [ sG( t)] or an orthogonal decomposition [ sO( t)] function. A separate CBFV step response was extracted from the model for each of the three inputs, providing estimates of dynamic cerebral autoregulation [CA; autoregulation index (ARI)], CO2 reactivity [vasomotor reactivity step response (VMRSR)], and NVC [stimulus step response (STIMSR)]. In 56 subjects, 224 model implementations produced excellent predictive CBFV correlation (median r = 0.995). Model-generated sO( t), for both dominant (DH) and nondominant (NDH) hemispheres, was highly significant during stimulation (<10−5) and was correlated with the CBFV change ( r = 0.73, P = 0.0001). The sO( t) explained a greater fraction of CBFV variance (~50%) than sG( t) (44%, P = 0.002). Most CBFV step responses to the three inputs were physiologically plausible, with better agreement for the CBFV-BP step response yielding ARI values of 7.3 for both DH and NDH for sG( t), and 6.9 and 7.4 for sO( t), respectively. No differences between DH and NDH were observed for VMRSR or STIMSR. A new procedure is proposed to represent the contribution from other aspects of CBF regulation than BP and CO2 in response to sensorimotor stimulation, as a tool for integrated, noninvasive, assessment of the multiple influences of dynamic CA, CO2 reactivity, and NVC in humans. NEW & NOTEWORTHY A new approach was proposed to identify the separate contributions of stimulation, arterial blood pressure (BP), and arterial CO2 ([Formula: see text]) to the cerebral blood flow (CBF) response observed in neurovascular coupling (NVC) studies in humans. Instead of adopting an empirical gate function to represent the stimulation input, a model-generated function is derived as part of the modeling process, providing a representation of the NVC response, independent of the contributions of BP or [Formula: see text]. This new marker of NVC, together with the model-predicted outputs for the contributions of BP, [Formula: see text] and stimulation, has considerable potential to both quantify and simultaneously integrate the separate mechanisms involved in CBF regulation, namely, cerebral autoregulation, CO2 reactivity and other contributions.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3