Inflammation Induces Ectopic Mechanical Sensitivity in Axons of Nociceptors Innervating Deep Tissues

Author:

Bove Geoffrey M.1,Ransil Bernard J.2,Lin Hsi-Chiang1,Leem Jeong-Gill1

Affiliation:

1. Department of Anesthesia and Critical Care Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215

2. Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215

Abstract

A variety of seemingly diverse pain syndromes are characterized by movement-induced pain radiating in the distribution of a peripheral nerve or nerve root. This could be explained by the induction of ectopic mechanical sensitivity in intact sensory axons. Here we show that inflammation led to mechanical sensitivity of the axons of a subset of mechanically sensitive primary sensory neurons. Dorsal root recordings were made from 194 mechanically sensitive neurons that innervated deep and cutaneous structures and had C, Aδ, and Aαβ conduction velocities. No axons of any category were mechanically sensitive in control experiments. However, the axons of neurons innervating deep structures and having C- or Aδ-conduction velocities became mechanically sensitive during the neuritis, and also exhibited an increased incidence of spontaneous discharge. The incidence of mechanical sensitivity followed a distinct time course. In some cases, paw withdrawal thresholds were obtained after neuritis induction. The time course of the resultant hypersensitivity was not directly related to the time course of the axonal mechanical sensitivity. Ectopic axonal mechanical sensitivity could explain some types of radiating, nerve-related pain coexisting with diseases of seemingly diverse etiologies.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3