Cell type-specific plasticity at parallel fiber synapses onto Purkinje cells in the posterior caudal lobe of the mormyrid fish cerebellum

Author:

Zhang Yueping12,Magnus Gerhard2,Han Victor Z.2

Affiliation:

1. Department of Pediatrics and Neuroscience, Xijing Hospital, Xi’an, China

2. Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington

Abstract

It has been demonstrated that there are two morphological subtypes of Purkinje cells (PCs)—fan-shaped Purkinje cells (fPCs) and multipolar Purkinje cells (mPCs)—in the posterior caudal lobe of the mormyrid fish cerebellum, but whether these cell types are also functionally distinct is unknown. Here, we have used electrophysiological and pharmacological tools in a slice preparation to demonstrate that pairing parallel fiber (PF) and climbing fiber (CF) inputs at a low frequency induces long-term depression (LTD) in fPCs but long-term potentiation (LTP) in mPCs. The induction of plasticity in both cell types required postsynaptic Ca2+ and type 1α metabotropic glutamate receptors. However, the LTD in fPCs was inducted via a calcium/calmodulin-dependent protein kinase II cascade, whereas LTP induction in mPCs required calcineurin. Moreover, the LTD in fPCs and LTP in mPCs were accompanied by changes to the corresponding paired-pulse ratios and their coefficients of variation, suggesting presynaptic modes of expression for the plasticity at PF terminals for both cell types. Hence, the synaptic plasticity at PF synapses onto PCs in the posterior caudal lobe of the mormyrid cerebellum is cell type specific, with both pre- and postsynaptic mechanisms contributing to its induction and expression. NEW & NOTEWORTHY Much has been learnt about the cerebellar long-term depression (LTD) in the cortex. More recent work has shown that long-term potentiation (LTP) is equally important for cerebellar motor learning. Here we report for the first time that plasticity in the mormyrid cerebellum is cell type specific, e.g., following the conventional pairing of parallel and climbing fiber inputs in an in vitro preparation leads to LTD in one Purkinje cell subtype and LTP in another.

Funder

National Natural Science Foundation of China (NSFC)

NSF | BIO | Division of Integrative Organismal Systems (IOS)

Seattle Children's Research Institute, REP

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3