Author:
Ashida Hiroshi,Lingnau Angelika,Wall Matthew B.,Smith Andrew T.
Abstract
A key unresolved debate in human vision concerns whether we have two different low-level mechanisms for encoding image motion. Separate neural mechanisms have been suggested for first-order (luminance modulation) and second-order (e.g., contrast modulation) motion in the retinal image but a single mechanism could handle both. Human functional magnetic resonance imaging (fMRI) has not so far convincingly revealed separate anatomical substrates. To examine whether two separate but co-localized mechanisms might exist, we used the technique of fast fMRI adaptation. We found direction-selective adaptation independently for each type of motion in the motion area V5/MT+ of the human brain. However, there was a total absence of cross-adaptation between first-order and second-order motion stimuli. This was true in both of the two subcomponents of MT+ (MT and MST) and similar results were found in V3A. This pattern of adaptation was consistent with psychophysical measurements of detection thresholds in similar stimulus sequences. The results provide strong evidence for separate neural populations that are responsible for detecting first- and second-order motion.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献