Asymmetric Recovery in Cerebellar-Deficient Mice Following Unilateral Labyrinthectomy

Author:

Beraneck M.,McKee J. L.,Aleisa M.,Cullen K. E.

Abstract

The term “vestibular compensation” refers to the resolution of motor deficits resulting from a peripheral vestibular lesion. We investigated the role of the cerebellum in the compensation process by characterizing the vestibuloocular reflex (VOR) evoked by head rotations at frequencies and velocities similar to those in natural behaviors in wild-type ( WT) versus cerebellar-deficient Lurcher ( Lc/+) mice. We found that during exploratory activity, normal mice produce head rotations largely consisting of frequencies ≤4 Hz and velocities and accelerations as large as 400°/s and 5,000°/s2, respectively. Accordingly, the VOR was characterized using sinusoidal rotations (0.2–4 Hz) as well as transient impulses (∼400°/s; ∼2,000°/s2). Before lesions, WT and Lc/+ mice produced similar VOR responses to sinusoidal rotation. Lc/+ mice, however, had significantly reduced gains for transient stimuli. After unilateral labyrinthectomy, VOR recovery followed a similar course for WT and Lc/+ groups during the first week: gain was reduced by 80% for ipsilesionally directed head rotations on day 1 and improved for both strains to values of ∼0.4 by day 5. Moreover, responses evoked by contralesionally directed rotations returned to prelesion in both strains within this period. However, unlike WT, which showed improving responses to ipsilesionally directed rotations, recovery plateaued after first week for Lc/+ mice. Our results show that despite nearly normal recovery in the acute phase, long-term compensation is compromised in Lc/+. We conclude that cerebellar pathways are critical for long-term restoration of VOR during head rotation toward the lesioned side, while noncerebellar pathways are sufficient to restore proper gaze stabilization during contralesionally directed movements.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3