Author:
Boron W. F.,McCormick W. C.,Roos A.
Abstract
Intracellular pH (pHi) regulation was studied in acid-loaded barnacle muscle fibers by monitoring recovery of pHi with a pH-sensitive microelectrode. By multiplying the rate of pHi recovery by total intracellular buffering power, the acid extrusion rate was obtained. The acid extrusion rate was greatest at low values of pHi, and declined toward zero as pHi approached normal levels. It increased as the extracellular pH (pHo) was raised either by increasing external [HCO3] ([HCO3]o) at constant PCO2 or by decreasing PCO2 at constant [HCO3]o, but more so in the former case than in the latter. These observations suggest that pHo per se is an important determinant of the acid extrusion rate, but that raising [HCO3]o by itself also stimulates acid extrusion. This would be expected if acid extrusion involves the inward movement of HCO3. When fibers were exposed to HCO3-containing solutions at very low or very high pHo, pHi drifted downward or upward, respectively; thbe drifts were inhibited by 4-acetamido-4' isothiocyanostilbene-2,2' disulfonic acid (SITS). Our results are discussed in terms of possible mechanisms of acid extrusion.
Publisher
American Physiological Society
Cited by
167 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献