Oxidative stress decreases pHi and Na+/H+ exchange and increases excitability of solitary complex neurons from rat brain slices

Author:

Mulkey Daniel K.,Henderson Richard A.,Ritucci Nick A.,Putnam Robert W.,Dean Jay B.

Abstract

Putative chemoreceptors in the solitary complex (SC) are sensitive to hypercapnia and oxidative stress. We tested the hypothesis that oxidative stress stimulates SC neurons by a mechanism independent of intracellular pH (pHi). pHi was measured by using ratiometric fluorescence imaging microscopy, utilizing either the pH-sensitive fluorescent dye BCECF or, during whole cell recordings, pyranine in SC neurons in brain stem slices from rat pups. Oxidative stress decreased pHi in 270 of 436 (62%) SC neurons tested. Chloramine-T (CT), N-chlorosuccinimide (NCS), dihydroxyfumaric acid, and H2O2 decreased pHi by 0.19 ± 0.007, 0.20 ± 0.015, 0.15 ± 0.013, and 0.08 ± 0.002 pH unit, respectively. Hypercapnia decreased pHi by 0.26 ± 0.006 pH unit ( n = 95). The combination of hypercapnia and CT or NCS had an additive effect on pHi, causing a 0.42 ± 0.03 ( n = 21) pH unit acidification. CT slowed pHi recovery mediated by Na+/H+ exchange (NHE) from NH4Cl-induced acidification by 53% ( n = 20) in [Formula: see text]-buffered medium and by 58% ( n = 10) in HEPES-buffered medium. CT increased firing rate in 14 of 16 SC neurons, and there was no difference in the firing rate response to CT with or without a corresponding change in pHi. These results indicate that oxidative stress 1) decreases pHi in some SC neurons, 2) together with hypercapnia has an additive effect on pHi, 3) partially inhibits NHE, and 4) directly affects excitability of CO2/H+-chemosensitive SC neurons independently of pHi changes. These findings suggest that oxidative stress acidifies SC neurons in part by inhibiting NHE, and this acidification may contribute ultimately to respiratory control dysfunction.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3