Author:
White Caroline N.,Figtree Gemma A.,Liu Chia-Chi,Garcia Alvaro,Hamilton Elisha J.,Chia Karin K. M.,Rasmussen Helge H.
Abstract
The sarcolemmal Na+-K+ pump, pivotal in cardiac myocyte function, is inhibited by angiotensin II (ANG II). Since ANG II activates NADPH oxidase, we tested the hypothesis that NADPH oxidase mediates the pump inhibition. Exposure to 100 nmol/l ANG II increased superoxide-sensitive fluorescence of isolated rabbit ventricular myocytes. The increase was abolished by pegylated superoxide dismutase (SOD), by the NADPH oxidase inhibitor apocynin, and by myristolated inhibitory peptide to ε-protein kinase C (εPKC), previously implicated in ANG II-induced Na+-K+ pump inhibition. A role for εPKC was also supported by an ANG II-induced increase in coimmunoprecipitation of εPKC with the receptor for the activated kinase and with the cytosolic p47 phox subunit of NADPH oxidase. ANG II decreased electrogenic Na+-K+ pump current in voltage-clamped myocytes. The decrease was abolished by SOD, by the gp91ds inhibitory peptide that blocks assembly and activation of NADPH oxidase, and by εPKC inhibitory peptide. Since colocalization should facilitate NADPH oxidase-dependent regulation of the Na+-K+ pump, we examined whether there is physical association between the pump subunits and NADPH oxidase. The α1-subunit coimmunoprecipitated with caveolin 3 and with membrane-associated p22 phox and cytosolic p47 phox NADPH oxidase subunits at baseline. ANG II had no effect on α1/caveolin 3 or α1/p22 phox interaction, but it increased α1/p47 phox coimmunoprecipitation. We conclude that ANG II inhibits the Na+-K+ pump via PKC-dependent NADPH oxidase activation.
Publisher
American Physiological Society
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献