Copper stabilizes the Menkes copper-transporting ATPase (Atp7a) protein expressed in rat intestinal epithelial cells

Author:

Xie Liwei1,Collins James F.1

Affiliation:

1. Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida

Abstract

Iron deficiency decreases oxygen tension in the intestinal mucosa, leading to stabilization of hypoxia-inducible transcription factor 2α (Hif2α) and subsequent upregulation of genes involved in iron transport [e.g., divalent metal transporter (Dmt1) and ferroportin 1 (Fpn1)]. Iron deprivation also alters copper homeostasis, reflected by copper accumulation in the intestinal epithelium and induction of an intracellular copper-binding protein [metallothionein (Mt)] and a copper exporter [Menkes copper ATPase (Atp7a)]. Importantly, Atp7a is also a Hif2α target. It was, however, previously noted that Atp7a protein expression was induced more strongly than mRNA in the duodenum of iron-deprived rats, suggesting additional regulatory mechanisms. The current study was thus designed to decipher mechanistic aspects of Atp7a regulation during iron deprivation using an established in vitro model of the mammalian intestine, rat intestinal epithelial (IEC-6) cells. Cells were treated with an iron chelator and/or copper loaded to mimic the in vivo situation. IEC-6 cells exposed to copper showed a dose-dependent increase in Mt expression, confirming intracellular copper accumulation. Iron chelation with copper loading increased Atp7a mRNA and protein levels; however, contrary to our expectation, copper alone increased only protein levels. This suggested that copper increased Atp7a protein levels by a posttranscriptional regulatory mechanism. Therefore, to determine if Atp7a protein stability was affected, the translation inhibitor cycloheximide was utilized. Experiments in IEC-6 cells revealed that the half-life of the Atp7a protein was ∼41 h and, furthermore, that intracellular copper accumulation increased steady-state Atp7a protein levels. This investigation thus reveals a novel mechanism of Atp7a regulation in which copper stabilizes the protein, possibly complementing Hif2α-mediated transcriptional induction during iron deficiency.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3