Adrenal fasciculata cells express T-type and rapidly and slowly activating L-type Ca2+ channels that regulate cortisol secretion

Author:

Enyeart John J.1,Enyeart Judith A.1

Affiliation:

1. Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio

Abstract

In whole cell patch-clamp recordings, we characterized the L-type Ca2+ currents in bovine adrenal zona fasciculata (AZF) cells and explored their role, along with the role of T-type channels, in ACTH- and angiotensin II (ANG II)-stimulated cortisol secretion. Two distinct dihydropyridine-sensitive L-type currents were identified, both of which were activated at relatively hyperpolarized potentials. One activated with rapid kinetics and, in conjunction with Northern blotting and PCR, was determined to be Cav1.3. The other, expressed in approximately one-half of AZF cells, activated with extremely slow voltage-dependent kinetics and combined properties not previously reported for an L-type Ca2+ channel. The T-type Ca2+ channel antagonist 3,5-dichloro- N-[1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2) inhibited Cav3.2 current in these cells, as well as ACTH- and ANG II-stimulated cortisol secretion, at concentrations that did not affect L-type currents. In contrast, nifedipine specifically inhibited L-type currents and cortisol secretion, but less effectively than TTA-P2. Diphenylbutylpiperidine Ca2+ antagonists, including pimozide, penfluridol, and fluspirilene, and the dihydropyridine niguldipine blocked Cav3.2 and L-type currents and inhibited ACTH-stimulated cortisol secretion with similar potency. This study shows that bovine AZF cells express three Ca2+ channels, the voltage-dependent gating and kinetics of which could orchestrate complex mechanisms linking peptide hormone receptors to cortisol secretion through action potentials or sustained depolarization. The function of the novel, slowly activating L-type channel is of particular interest in this respect. Regardless, the well-correlated selective inhibition of T- and L-type currents and ACTH- and ANG II-stimulated cortisol secretion by TTA-P2 and nifedipine establish the critical importance of these channels in AZF cell physiology.

Funder

NIH, NIDDK

The Ohio State University Dept. of Neuroscience

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3