PACAP-induced ERK activation in HEK cells expressing PAC1 receptors involves both receptor internalization and PKC signaling

Author:

May Victor1,Buttolph Thomas R.1,Girard Beatrice M.1,Clason Todd A.1,Parsons Rodney L.1

Affiliation:

1. Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont

Abstract

The pituitary adenylate cyclase-activating polypeptide (PACAP)-selective PAC1 receptor ( Adcyap1r1) is a G protein-coupled receptor (GPCR) that activates adenylyl cyclase and PLC. Similar to many other GPCRs, our previous studies showed that the PAC1 receptor is internalized after ligand binding to form signaling endosomes, which recruit additional second messenger pathways. Using a human embryonic kidney (HEK 293) PAC1Hop1-EGFP receptor cell line, we have examined how different PAC1 receptor signaling mechanisms contribute to MEK/ERK activation. Unlike PAC1 receptor-stimulated adenylyl cyclase/cAMP production in the plasma membrane, PACAP-mediated ERK phosphorylation was partly dependent on receptor internalization, as determined by treatment with pharmacological inhibitors of endocytosis or temperature reduction, which also suppressed receptor internalization. Stimulation of cAMP generation by forskolin or exposure to the cell-permeable cAMP analogs 8-bromo-cAMP and dibutyryl cAMP had minimal effects on ERK phosphorylation in this system. The ability of reduced temperature (24°C) to consistently suppress ERK activation to a greater extent than the endocytosis inhibitors Pitstop 2 and dynasore indicated that other mechanisms, in addition to PAC1 internalization/endosome activation, were involved. Inhibition of PAC1 receptor-stimulated PLC/diacylglycerol/PKC signaling by bisindoylmaleimide I also attenuated ERK phosphorylation, and direct PKC activation with phorbol ester increased ERK phosphorylation in a temperature-dependent manner. Inhibition of PAC1 receptor endocytosis and PKC activation completely blocked PACAP-stimulated ERK activation. PACAP augmented phosphorylated ERK staining uniformly over the cytoplasm and nucleus, and PKC signaling facilitated nuclear phosphorylated ERK translocation. In sum, our results show that PACAP/PAC1 receptor endocytosis and PLC/diacylglycerol/PKC activation represent two complementary mechanisms contributing to PACAP-induced ERK activation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3