Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways

Author:

Wang Hong1,Ubl Joachim J.1,Stricker Rolf1,Reiser Georg1

Affiliation:

1. Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Neurobiochemie, 39120 Magdeburg, Germany

Abstract

Protease-activated receptors (PARs), newly identified members of G protein-coupled receptors, are widely distributed in the brain. Thrombin evokes multiple cellular responses in a large variety of cells by activating PAR-1, -3, and -4. In cultured rat astrocytes we investigated the signaling pathway of thrombin- and PAR-activating peptide (PAR-AP)-induced cell proliferation. Our results show that PAR activation stimulates proliferation of astrocytes through the ERK pathway. Thrombin stimulates ERK1/2 phosphorylation in a time- and concentration-dependent manner. This effect can be fully mimicked by a specific PAR-1-AP but only to a small degree by PAR-3-AP and PAR-4-AP. PAR-2-AP can induce a moderate ERK1/2 activation as well. Thrombin-stimulated ERK1/2 activation is mainly mediated by PAR-1 via two branches: 1) the PTX-sensitive G protein/(βγ-subunits)-phosphatidylinositol 3-kinase branch, and 2) the Gq-PLC-(InsP3receptor)/Ca2+-PKC pathway. Thrombin- or PAR-1-AP-induced ERK activation is partially blocked by a selective EGF receptor inhibitor, AG1478. Nevertheless, transphosphorylation of EGF receptor is unlikely for ERK1/2 activation and is certainly not involved in PAR-1-induced proliferation. The metalloproteinase mechanism involving transactivation of the EGF receptor by released heparin-binding EGF was excluded. EGF receptor activation was detected by the receptor autophosphorylation site, tyrosine 1068. Our data suggest that thrombin-induced mitogenic action in astrocytes occurs independently of EGF receptor transphosphorylation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3