Iron induces cancer stem cells and aggressive phenotypes in human lung cancer cells

Author:

Chanvorachote Pithi12,Luanpitpong Sudjit23ORCID

Affiliation:

1. Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand;

2. Cell-based Drug and Health Products Development Research Unit, Chulalongkorn University, Bangkok, Thailand; and

3. Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

Abstract

Evidence has accumulated in support of the critical impact of cancer stem cells (CSCs) behind the chemotherapeutic failure, cancer metastasis, and subsequent disease recurrence and relapse, but knowledge of how CSCs are regulated is still limited. Redox status of the cells has been shown to dramatically influence cell signaling and CSC-like aggressive behaviors. Here, we investigated how subtoxic concentrations of iron, which have been found to specifically induce cellular hydroxyl radical, affected CSC-like subpopulations of human non-small cell lung carcinoma (NSCLC). We reveal for the first time that subchronic iron exposure and higher levels of hydroxyl radical correlated well with increased CSC-like phenotypes. The iron-exposed NSCLC H460 and H292 cells exhibited a remarkable increase in propensities to form CSC spheroids and to proliferate, migrate, and invade in parallel with an increase in level of a well-known CSC marker, ABCG2. We further observed that such phenotypic changes induced by iron were not related to an epithelial-to-mesenchymal transition (EMT). Instead, the sex-determining region Y (SRY)-box 9 protein (SOX9) was substantially linked to iron treatment and hydroxyl radical level. Using gene manipulations, including ectopic SOX9 overexpression and SOX9 short hairpin RNA knockdown, we have verified that SOX9 is responsible for CSC enrichment mediated by iron. These findings indicate a novel role of iron via hydroxyl radical in CSC regulation and its importance in aggressive cancer behaviors and likely metastasis through SOX9 upregulation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3