tert-Butylhydroquinone mobilizes intracellular-bound zinc to stabilize Nrf2 through inhibiting phosphatase activity

Author:

Chen Yunfang1,Wang Sheng2,Fu Xin1,Zhou Wenqu1,Hong Wei1,Zou Dongting1,Li Xichong1,Liu Jinbao3,Ran Pixin2,Li Bing1

Affiliation:

1. Experiment Medical Research Center, Guangzhou Medical University, Guangzhou, China;

2. National key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China

3. Department of Pathophysiology, Guangzhou Medical University, Guangzhou, China; and

Abstract

The nuclear factor erythroid 2-related factor 2 (Nrf2) is required to combat increases in oxidative stress. The chemical compound tert-butylhydroquinone (tBHQ) can downregulate Kelch-like ECH-associated protein 1 (Keap1), a repressor of Nrf2, thus maintaining the stability of Nrf2. tBHQ can also increase intracellular “free” zinc in human bronchial epithelial (16HBE) cells. We aim to investigate whether the intracellular free zinc change plays a role in Nrf2 activation. tBHQ exposure dose-dependently increases intracellular free zinc concentrations within 30 min in 16HBE cells by mobilizing intracellular zinc pools. Active Nrf2 and the antioxidant enzyme heme oxygenase-1 (HO-1) increase at 3 h after tBHQ treatment. Chelating intracellular free zinc with tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) during tBHQ exposure partially abrogates the tBHQ-induced activation of Nrf2 and HO-1 expression, while Keap1 is further decreased. These results indicate that tBHQ-induced stability of Nrf2 is associated with the intracellular free zinc level. Because the activated Nrf2 is phosphorylated, the serine/threonine protein phosphatase activity, which is known to be inhibited by zinc, is assayed. The results showed that tBHQ treatment can suppress cellular protein phosphatase-2A (PP2A) and protein phosphatase-2C (PP2C) activity, which can be abrogated by adding TPEN. This finding is verified in a cell-free protein extract experiment by supplying zinc or by chelating zinc with TPEN. These results provide a novel mechanistic insight into Nrf2 activation in antioxidant enzyme induction involving zinc signaling. The increase of intracellular free zinc may be one mechanism for Nrf2 activation. The inhibition of PP2A and PP2C activity may be involved in Nrf2 phosphorylation modulation.

Funder

National Natural Science Foundation of China (NSFC)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3