Effects of peroxynitrite on sarcoplasmic reticulum Ca2+ pump in pig coronary artery smooth muscle

Author:

Grover Ashok K.12,Samson Sue E.1,Robinson Sarah1,Kwan Chiu Yin1

Affiliation:

1. Departments of Medicine and

2. Biology, McMaster University, Hamilton, Ontario, Canada L8N 3Z5

Abstract

Peroxynitrite generated in arteries from superoxide and NO may damage Ca2+ pumps. Here, we report the effects of peroxynitrite on ATP-dependent azide-insensitive uptake of Ca2+ into pig coronary artery vesicular membrane fractions F2 [enriched in plasma membrane (PM)] and F3 [enriched in sarcoplasmic reticulum (SR)]. Membranes were pretreated with peroxynitrite and then with DTT to quench this agent. This pretreatment inhibited Ca2+ uptake in a peroxynitrite concentration-dependent manner, but the effect was more severe in F3 than in F2. The inhibition was thus not overcome by excess DTT used to quench peroxynitrite and was not affected if catalase, SOD, or mannitol was added along with peroxynitrite. Such damage to the pump protein would be difficult to repair if produced during ischemia-reperfusion. The acylphosphates formed with ATP in F3 corresponded mainly to the SR Ca2+ pump (110 kDa), but in F2 both PM (140 kDa) and 110-kDa bands were observed. Peroxynitrite treatment of F2 inhibited only the 110-kDa band. Inhibition of Ca2+ uptake and acylphosphate formation from ATP correlated well in peroxynitrite-treated F3 samples. However, inhibition of acylphosphates from orthophosphate (reverse reaction of the pump) was slightly poorer. Peroxynitrite treatment also covalently cross-linked the pump protein, yielding no dimers but only larger oligomers. In contrast, cross-linking of the SR Ca2+ pump in skeletal and cardiac muscles gives dimers as the first oligomers. Therefore, we speculate that SERCA2 has a different quaternary structure in the coronary artery smooth muscle.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3