COMMD1 interacts with the COOH terminus of NKCC1 in Calu-3 airway epithelial cells to modulate NKCC1 ubiquitination

Author:

Smith Laura1,Litman Paul1,Liedtke Carole M.1

Affiliation:

1. Willard Alan Bernbaum, Center for Cystic Fibrosis Research, Departments of Pediatrics at Rainbow Babies and Children Hospital and Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio

Abstract

Mice deficient in Na-K-2Cl cotransporter (NKCC1) have been generated by targeted disruption of the gene encoding NKCC1 involving the carboxy terminus (CT-NKCC1) but not the amino terminus. We hypothesize that the resulting physiological defects are due to loss of proteins interacting with CT-NKCC1. Using a yeast two-hybrid approach, adaptor protein COMMD1 was found to bind to CT-NKCC1 (aa 1,040–1,212). Binding was verified in a yeast-independent system using GST-COMMD1 and myc-CT-NKCC1. Truncated COMMD1 and CT-NKCC1 peptides were used in binding assays to identify the site of interaction. The results demonstrate concentration-dependent binding of COMMD1 (aa 1–47) to CT-NKCC1 (aa 1,040–1,134). Endogenous COMMD1 was detected in pull downs using recombinant FLAG-CT-NKCC1; this co-pull down was blocked by COMMD1 (aa 1–47). CT-NKCC1 (aa 1,040–1,137) decreased basolateral membrane expression of NKCC1, and COMMD1 (aa 1–47) increased NKCC1 membrane expression. Downregulation of COMMD1 using silencing (si)RNA led to a transient loss of endogenous COMMD1 but did not affect activation of NKCC1 by hyperosmotic sucrose. Hyperosmolarity caused a transient increase in NKCC1 membrane expression, indicating regulated trafficking of NKCC1; downregulation of COMMD1 using siRNA reduced baseline (unstimulated) NKCC1 expression and blunted a transient elevation in NKCC1 membrane expression caused by hyperosmolarity. Constitutive downregulation of COMMD1 in HT29 engineered cells exhibited loss of COMMD1 and decreased NKCC1 membrane expression with no effect on activation of NKCC1. Loss of COMMD1 in Calu-3 cells and in HT29 cells led to reduced ubiquitinated NKCC1. The results indicate a role for COMMD1 in the regulation of NKCC1 membrane expression and ubiquitination.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3