Attenuation of cAMP accumulation in adult rat cardiac fibroblasts by IL-1β and NO: role of cGMP-stimulated PDE2

Author:

Gustafsson Åsa B.1,Brunton Laurence L.2

Affiliation:

1. Biomedical Sciences Graduate Program,

2. Departments of Pharmacology and Medicine, University of California at San Diego, La Jolla, California 92093

Abstract

Treatment of cultured adult rat cardiac fibroblasts with interleukin-1β (IL-1β) induces the inducible nitric oxide synthase (iNOS) expression, increases nitric oxide (NO) and cGMP production, and attenuates cAMP accumulation in response to isoproterenol by ∼50%. Reduced cAMP accumulation is due to NO production: the effect is mimicked by NO donors and prevented by N G-monomethyl-l-arginine, an NOS inhibitor. Effects of NO are not restricted to the β-adrenergic response; the response to forskolin is similarly diminished. NO donors only slightly (12%) decrease forskolin-stimulated adenylyl cyclase (AC) activity in cardiac fibroblast plasma membranes, suggesting that the main effect of NO is not a direct one on AC. An inhibitor of soluble guanylyl cyclase inhibits the effects of IL-1β and NO donors; inhibition of cGMP-dependent protein kinase is without effect. 3-Isobutyl-1-methylxanthine, a nonspecific phosphodiesterase (PDE) inhibitor, and erythro-9-(2-hydroxy-3-nonyl)adenine, a specific inhibitor of the cGMP-stimulated PDE (PDE2), completely restore cAMP accumulation in sodium nitroprusside-treated fibroblasts and largely reverse the attenuated response in IL-1β-treated fibroblasts. Although NO reportedly acts by reducing AC activity in some cells, in cardiac fibroblasts NO production decreases cAMP accumulation largely by the cGMP-mediated activation of PDE2.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3