Affiliation:
1. Departments of Medicine and CF/Pulmonary Research and Treatment Center and
2. Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
Abstract
Cystic fibrosis transmembrane regulator (CFTR) is reported to be preferentially regulated by membrane-bound protein kinase A (PKAII). We tested for close physical and functional association of PKA with CFTR in inside-out membrane patches excised from Calu-3 cells. In the presence of MgATP, 8-(4-chlorophenylthio)adenosine 3′,5′-cyclic monophosphate (CPT-cAMP) increased the product of CFTR channel number and open probability (from 0.36 ± 0.12 to 1.23 ± 0.57, n = 20, P < 0.0025), and this stimulation was abolished by PKI. Thus Calu-3 membrane isolated from cells retains PKA holoenzyme that is functionally coupled to CFTR. PKAII is anchored at specific subcellular sites by A kinase anchoring proteins (AKAPs). Exposure of excised patches to HT-31, a peptide that disrupts the association of PKAII and AKAPs, prevented CPT-cAMP stimulation of CFTR. Therefore, PKA holoenzyme in isolated membrane patches is bound to AKAPs. In whole cell voltage-clamp studies, intracellular dialysis of Calu-3 cells with HT-31 blocked the activation of CFTR by extracellular adenosine. These results suggest that AKAPs mediate PKA compartmentalization with CFTR and are required for activation of CFTR by physiological regulators.
Publisher
American Physiological Society
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献