Mechanical strain memory in airway smooth muscle

Author:

Chan Wah-Lun1,Silberstein Jeanette1,Hai Chi-Ming1

Affiliation:

1. Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912

Abstract

We investigated the effect of a single rapid stretch on poststretch force and myosin phosphorylation in bovine tracheal smooth muscle. When unstimulated muscle strips were stretched from suboptimal length to optimal length ( L o), poststretch steady-state force was not significantly different from that of unstretched control at L o. However, when carbachol-activated muscle strips were stretched from suboptimal length to L o, poststretch force and myosin phosphorylation were lower than control and significantly correlated with initial length. When poststretch muscle strips were allowed to relax for 1 h and then activated by K+ depolarization, the developed force remained significantly correlated with initial length. When the same strain was applied in 23 increments to minimize peak stress, poststretch force and myosin phosphorylation increased significantly, approaching the levels expected at L o. Furthermore, poststretch force development increased after each cycle of contraction and relaxation, approaching the control level after four cycles. These results suggest that activated airway smooth muscle cells can retain relatively precise memory of past strain when they are stretched rapidly with high stress.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implications of Cellular Mechanical Memory in Bioengineering;ACS Biomaterials Science & Engineering;2023-10-05

2. Multiscale modeling of twitch contractions in cardiac trabeculae;Journal of General Physiology;2021-01-29

3. Emerging Concepts and Tools in Cell Mechanomemory;Annals of Biomedical Engineering;2019-11-19

4. Molecular Mechanisms for the Mechanical Modulation of Airway Responsiveness;Journal of Engineering and Science in Medical Diagnostics and Therapy;2019-02-01

5. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells;Nature Materials;2016-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3