Mechanisms of Pi regulation of the skeletal muscle SR Ca2+ release channel

Author:

Balog Edward M.1,Fruen Bradley R.1,Kane Patricia K.1,Louis Charles F.1

Affiliation:

1. Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota 55455

Abstract

Inorganic phosphate (Pi) accumulates in the fibers of actively working muscle where it acts at various sites to modulate contraction. To characterize the role of Pi as a regulator of the sarcoplasmic reticulum (SR) calcium (Ca2+) release channel, we examined the action of Pi on purified SR Ca2+ release channels, isolated SR vesicles, and skinned skeletal muscle fibers. In single channel studies, addition of Pi to the cis chamber increased single channel open probability ( P o; 0.079 ± 0.020 in 0 Pi, 0.157 ± 0.034 in 20 mM Pi) by decreasing mean channel closed time; mean channel open times were unaffected. In contrast, the ATP analog, β,γ-methyleneadenosine 5′-triphosphate (AMP-PCP), enhanced P o by increasing single channel open time and decreasing channel closed time. Pi stimulation of [3H]ryanodine binding by SR vesicles was similar at all concentrations of AMP-PCP, suggesting Pi and adenine nucleotides act via independent sites. In skinned muscle fibers, 40 mM Pi enhanced Ca2+-induced Ca2+ release, suggesting an in situ stimulation of the release channel by high concentrations of Pi. Our results support the hypothesis that Pi may be an important endogenous modulator of the skeletal muscle SR Ca2+ release channel under fatiguing conditions in vivo, acting via a mechanism distinct from adenine nucleotides.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3