Structure, function, and genomic organization of human Na+-dependent high-affinity dicarboxylate transporter

Author:

Wang Haiping1,Fei You-Jun1,Kekuda Ramesh1,Yang-Feng Teresa L.2,Devoe Lawrence D.3,Leibach Frederick H.1,Prasad Puttur D.3,Ganapathy Vadivel1

Affiliation:

1. Departments of Biochemistry and Molecular Biology, and

2. Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510

3. Obstetrics and Gynecology, Medical College of Georgia, Augusta, Georgia 30912; and

Abstract

We have cloned and functionally characterized the human Na+-dependent high-affinity dicarboxylate transporter (hNaDC3) from placenta. The hNaDC3 cDNA codes for a protein of 602 amino acids with 12 transmembrane domains. When expressed in mammalian cells, the cloned transporter mediates the transport of succinate in the presence of Na+ [concentration of substrate necessary for half-maximal transport ( K t) for succinate = 20 ± 1 μM]. Dimethylsuccinate also interacts with hNaDC3. The Na+-to-succinate stoichiometry is 3:1 and concentration of Na+ necessary for half-maximal transport[Formula: see text]is 49 ± 1 mM as determined by uptake studies with radiolabeled succinate. When expressed in Xenopus laevis oocytes, hNaDC3 induces Na+-dependent inward currents in the presence of succinate and dimethylsuccinate. At a membrane potential of −50 mV,[Formula: see text] is 102 ± 20 μM and[Formula: see text]is 22 ± 4 mM as determined by the electrophysiological approach. Simultaneous measurements of succinate-evoked charge transfer and radiolabeled succinate uptake in hNaDC3-expressing oocytes indicate a charge-to-succinate ratio of 1:1 for the transport process, suggesting a Na+-to-succinate stoichiometry of 3:1. pH titration of citrate-induced currents shows that hNaDC3 accepts preferentially the divalent anionic form of citrate as a substrate. Li+inhibits succinate-induced currents in the presence of Na+. Functional analysis of rat-human and human-rat NaDC3 chimeric transporters indicates that the catalytic domain of the transporter lies in the carboxy-terminal half of the protein. The human NaDC3 gene is located on chromosome 20q12–13.1, as evidenced by fluorescent in situ hybridization. The gene is >80 kbp long and consists of 13 exons and 12 introns.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3