K-Cl cotransport in vascular smooth muscle and erythrocytes: possible implication in vasodilation

Author:

Adragna Norma C.1,White Richard E.2,Orlov Sergei N.3,Lauf Peter K.2

Affiliation:

1. Departments of Pharmacology and Toxicology and

2. Physiology and Biophysics, Wright State University, School of Medicine, Dayton, Ohio 45435; and

3. Laboratory of Molecular Medicine, Centre de Recherche de L'Université de Montreal, Quebec H2W 1T8, Canada

Abstract

K-Cl cotransport, the electroneutral-coupled movement of K and Cl ions, plays an important role in regulatory volume decrease. We recently reported that nitrite, a nitric oxide derivative possessing potent vasodilation properties, stimulates K-Cl cotransport in low-K sheep red blood cells (LK SRBCs). We hypothesized that activation of vascular smooth muscle (VSM) K-Cl cotransport by vasodilators decreases VSM tension. Here we tested this hypothesis by comparing the effects of commonly used vasodilators, hydralazine (HYZ), sodium nitroprusside, isosorbide mononitrate, and pentaerythritol, on K-Cl cotransport in LK SRBCs and in primary cultures of rat VSM cells (VSMCs) and of HYZ-induced K-Cl cotransport activation on relaxation of isolated porcine coronary rings. K-Cl cotransport was measured as the Cl-dependent K efflux or Rb influx in the presence and absence of inhibitors for other K/Rb transport pathways. All vasodilators activated K-Cl cotransport in LK SRBCs and HYZ in VSMCs, and this activation was inhibited by calyculin and genistein, two inhibitors of K-Cl cotransport. KT-5823, a specific inhibitor of protein kinase G, abolished the sodium nitroprusside-stimulated K-Cl cotransport in LK SRBCs, suggesting involvement of the cGMP pathway in K-Cl cotransport activation. Hydralazine, in a dose-dependent manner, and sodium nitroprusside relaxed (independently of the endothelium) precontracted arteries when only K-Cl cotransport was operating and other pathways for K/Rb transport, including the Ca-activated K channel, were inhibited. Our findings suggest that K-Cl cotransport may be involved in vasodilation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3