Affiliation:
1. Departments of Pharmacology and Toxicology and
2. Physiology and Biophysics, Wright State University, School of Medicine, Dayton, Ohio 45435; and
3. Laboratory of Molecular Medicine, Centre de Recherche de L'Université de Montreal, Quebec H2W 1T8, Canada
Abstract
K-Cl cotransport, the electroneutral-coupled movement of K and Cl ions, plays an important role in regulatory volume decrease. We recently reported that nitrite, a nitric oxide derivative possessing potent vasodilation properties, stimulates K-Cl cotransport in low-K sheep red blood cells (LK SRBCs). We hypothesized that activation of vascular smooth muscle (VSM) K-Cl cotransport by vasodilators decreases VSM tension. Here we tested this hypothesis by comparing the effects of commonly used vasodilators, hydralazine (HYZ), sodium nitroprusside, isosorbide mononitrate, and pentaerythritol, on K-Cl cotransport in LK SRBCs and in primary cultures of rat VSM cells (VSMCs) and of HYZ-induced K-Cl cotransport activation on relaxation of isolated porcine coronary rings. K-Cl cotransport was measured as the Cl-dependent K efflux or Rb influx in the presence and absence of inhibitors for other K/Rb transport pathways. All vasodilators activated K-Cl cotransport in LK SRBCs and HYZ in VSMCs, and this activation was inhibited by calyculin and genistein, two inhibitors of K-Cl cotransport. KT-5823, a specific inhibitor of protein kinase G, abolished the sodium nitroprusside-stimulated K-Cl cotransport in LK SRBCs, suggesting involvement of the cGMP pathway in K-Cl cotransport activation. Hydralazine, in a dose-dependent manner, and sodium nitroprusside relaxed (independently of the endothelium) precontracted arteries when only K-Cl cotransport was operating and other pathways for K/Rb transport, including the Ca-activated K channel, were inhibited. Our findings suggest that K-Cl cotransport may be involved in vasodilation.
Publisher
American Physiological Society
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献