An electrogenic Na+- HCO 3 − cotransporter (NBC) with a novel COOH-terminus, cloned from rat brain

Author:

Bevensee Mark O.1,Schmitt Bernhard M.1,Choi Inyeong1,Romero Michael F.1,Boron Walter F.1

Affiliation:

1. Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520

Abstract

We screened rat brain cDNA libraries and used 5′ rapid amplification of cDNA ends to clone two electrogenic Na+-[Formula: see text] cotransporter (NBC) isoforms from rat brain (rb1NBC and rb2NBC). At the amino acid level, one clone (rb1NBC) is 96% identical to human pancreas NBC. The other clone (rb2NBC) is identical to rb1NBC except for 61 unique COOH-terminal amino acids, the result of a 97-bp deletion near the 3′ end of the open-reading frame. Using RT-PCR, we confirmed that mRNA from rat brain contains this 97-bp deletion. Furthermore, we generated rabbit polyclonal antibodies that distinguish between the unique COOH-termini of rb1NBC (αrb1NBC) and rb2NBC (αrb2NBC). αrb1NBC labels an ∼130-kDa protein predominantly from kidney, and αrb2NBC labels an ∼130-kDa protein predominantly from brain. αrb2NBC labels a protein that is more highly expressed in cortical neurons than astrocytes cultured from rat brain; αrb1NBC exhibits the opposite pattern. In expression studies, applying 1.5% CO2/10 mM [Formula: see text] to Xenopus oocytes injected with rb2NBC cRNA causes 1) pHi to recover from the initial CO2-induced acidification and 2) the cell to hyperpolarize. Subsequently, removing external Na+ reverses the pHi increase and elicits a rapid depolarization. In the presence of 450 μM DIDS, removing external Na+ has no effect on pHi and elicits a small hyperpolarization. The rate of the pHidecrease elicited by removing Na+ is insensitive to removing external Cl. Thus rb2NBC is a DIDS-sensitive, electrogenic NBC that is predominantly expressed in brain of at least rat.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3